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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3217

THE INFLUENCE OF WHEEL SPIN-UP
ON LANDING-GEAR IMPACT

By W. Flugge and C. W. Coale
SUMMARY

This report is a continuation of Technical Note 2743. It deals with
the influence of the wheel drag on the performance of the landing gear.
The differential equations are developed and are solved by numerical inte-
gration and by an analytical method. Special emphasis has been laid on
dropping all influences of minor importance in order to made computations
as simple as possible.

The possibilities of an eccentric wheel and of an inclined shock
strut have been considered. In both cases the computation is rather
involved. The binding of the piston due to ovalization of the shock-
strut cylinder does not seem to present a serious problem.

INTRODUCTION

The study of impact forces in landing gears presented in Technical
Note 2743 was subject to the restriction that no drag force on the wheel
was admitted. The present report deals with the influence of the wheel
drag on the performance of the landing gear.

When an airplsne approaches the ground, the wheels of the landing
gear must be brought from rest to the angular velocity which corresponds
to the forward speed of the airplane rolling on the runway. The accel-
erating moment is supplied by & horizontal force acting between the
ground end the wheel, the drdg D. The magnitude of this drag depends,
of course, on the vertical force F and will increase as F increases,
until the wheel has been completely spun up. Then the drag disappears
except for a small remainder, the rolling resistance of the wheel, which
is of no importance for the problem treated here.

During the spin-up time the horizontal force acts on the cantilever
shock strut and presses the bearing parts of the piston and barrel against
each other. Through this action the friction of the shock strut is
increased and hence its axial force F, which in turn influences D.

The phenomenon becomes still more involved because of the horizontal
deflection of the landing geer. Modern cantilever shock struts are
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rather flexible; and, since the drag builds up in a very short time, the
wheel mass undergoes a considerable horizontal acceleration. Therefore,
the force which is transmitted to the axle of the wheel is different
from the drag which acts on its rim.

When the spin-up of the Wheel is completed and the drag drops
almost to zero, the landing gear is in a state of lateral deflection;
and, since the deflecting force has vanished, it will spring back. The
ensuing fore-and-aft vibration is damped, 'but for several cycles it
produces apprecisble bending moments in the shock strut and its influence
on the piston friction is similar to that of the spin-up drag.

This work was conducted at Stanford University.under the sponsorship
and with the financial assistance of the National Advisory Committee for
Aeronauties.

SYMBOLS

Ao immer cross section of barrel at oil level

Ay total cross section of piston

Ao inner cross section of piston

A3 cross section of oil jet, equal to area of gap around
metering pin times orifice factor

a i axial distance between upper and lower 'bea.rings for fully
extended shock strut (see fig. 6)

a mean radius of cylindrical shell (used only in section
"Binding of Shock Strut")

8y Ek kth coefficient for power-series expansion of x3

b effective width of cylindrical she.'L‘L (used only in
section "Binding of Shock Strut")

by Ek kth coefficient for power-series expansion of xo

Cyes Ek kth coefficient for power-series expansion of x

D wheel drag (see figs. 1 and 8)

4, & °  kth coefficie'r}t for power-series expansion of y
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4t mem e e m s armarm e A g . — a——

modulus of elasticity of shock-strut barrel
eccentricity of wheel

vertical force applied to wheel axle

part of F; due to alir pressure in oleo strut

resultant force of oll pressure acting on surface of
piston

compressive force in shock strut

compressive force between wheel and ground, normal to
runway

force transmitted at wheel axle, directed normal to
shock strut

mass moment of inertia of vheel

spring constant, used in preliminary study
spring constant of tire

spring constant for spring-i)ack vibration

axial distance between axle and upper bearing attached
to inner cylinder (see fig. 6) X

bending moment in circular ring

wWheel mass

part of alrplane mass attributed to landing gear
unsprung mass (wheel and lower part of shock 'strut)
mass for spring-back motion

total normal force

normal forces between plston and barrel

initial air pressuz"e in oleo strut

alr pressure in upper and lower chamber of shock strut,
respectively
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resultant force per unit area of strip of middle surface
of cylinder (see section "Binding of Shoék Strut")
radius of wheel (distence of its center from runway)
total friction force
friction forces comnected with normal forces N; and ' No
time

wall thickness of shock-strut barrel (used only in section
"Binding of Shock Strut")

vertical velocity.of alrplane at contact
horizontal velocity of airplane

load on esirplane (weight minus 1ift)

ovalization of shock-strut barrel

stroke of shock strut

vertical displacement of mass my

vertical displacement of wheel center

ampiitude of y <for spring-back vibration
deflection of shock strut, measured at wheel axle
angle between oleo strut and vertical

kth coefficient for power-series expansion of A3 as a
function of <

coefficient (see eq. (17))

definitions precede equations (31) and (45), respectively
polytropic exponent of slr in oleo strut

polaer coordinate (see fig. 23)

coefficients (see eq. 25))
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Ky, Ko, Kz

A =Vk/m

01, O2

T

¢°’ ¢l

w
Subscripts:

max

et m r—ae - et — T - ———— m— - ——

parameters explained and used in section "Analytical
Method of Solution"

frequency of vertical vibration of airplane
frequency of spin-up vibration

frequency of spring-back vibration

wheel friction coefficient

coefficient of friction between runway and wheel
coefficient of friction of shock strut

Poisson's ratio

mass density of oll in oleo strut

bending stress in shock-strut barrel
coefficients (see eq. (26))

time variable, counted from start of an interval
coefficients (see eq. (24))

angular velocity of spinning wheel

maximm value

value at start of interval n

initisl conditions

value at transitiqn from phase two to phase three

value at start of phase two

RO RUSUPRS W —
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PRELIMINARY STUDY OF SPIN-UP

Since the real landing-gear problem is rather involved, it is useful
to study first some simplified problems which may easily be solved and
which will indicete the general character of the solutions to be expected

for the landing gear.

This preliminary study is concerned with a wheel which is restrained
horizontally by a spring as indicated in figure 1.. This wheel is origi-
nally at rest and at t = O is pressed against a horizontal plane which
moves with the constant speed Vy toward the right. The vertical

force- ¥ applied to the axle of the wheel is a given function of time.
Tt will here be assumed zero for t <0 and equal to a constant value
for t 2 0. Because of the relative motion between the wheel and the

ground a drag D = uF 1is developed which tends to spin the wheel up.
But it also pushes the wheel to the right, producing a deflection Yy,

varying with time.

The equations of motion of the wheel may easily be written. If m
is its mass and I, its moment of inertia, one has

my = pF - ky (12)
In = pFr (1v)

These equations hold while the wheel is spinning up, that is, while the
horizontal velocity of its rim at the point of contact is smaller than
the ground speed:

&' + T < Vh
The initial conditions express the fact that the motion starts from rest:

Abt=0:y=0,y=0, =0
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The solution which satisfies these conditions is

q
y=£(l- cos At)
k
3 = k/m g (2)
o = pFrt/I
\J

It 1s shown in figure 2.

While the force acting st the rim of the wheel is always equal
to uF, the force at the axle is ky and varies between O and 2uF.
In the case of a landing gear this variable force is responsible for
the bending moment in the shock strut and for the piston friction.

The spin-up phase is terminated at a certain time + = ty (see
fig. 3) when

& + T = Vh

For t > ty, the drag can no longer be uF, and equations (1)
must be written:

my =D - ky (33)
In = Dr (3)

vhere D 1is now & third unknown. Two things might occur: D may be
restricted between the limits +tuF, but otherwise unknown, and then
there exists as a third equation the condition of rolling:

}."-i'I'cD:Vh (30)

On the other hand, the drag might attain the value D = -uF, and there
would be slipping in the opposite directionm,

y+rm>Vy
It will be shown that the second case never occurs.
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Equetions (3a) to (3c) may easily be solved. Equations (3b) and (3c)
are used to eliminate D and @ from equation (38.) without increasing
the order of this differential equation:

(m+-rlz)'i+ky=0 (&)

Evidently this equation describes a free vibration about the unde-
flected position, but with a fictitious mass m + I/r2.

The solution of equation (4) is subject to the conditions that,
for t = tg, one has:

Y =¥y

y.'=Y-|;

that is, those values which are found for the end of the spin-up phase.
The following solution satisfies these conditions:

¥ = ¥ cos k'(t-tt)+-3_;—?-sin)\’(t-tt) (52)
with
2 r?
x' B cmt——————
( ) I+ mr2

From it one finds with the help of equations (3c), (L4), and (3a):

o = %th + YA sin 7\'(1-, - tt) - ¥, cos 7\'(1-, - tt)] (5b)

= IK
D—I+mr2y (5¢)
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The maximum of the displacement y (:Ln either direction) is

end, when here y =y, from equation (2) is introduced, one obtains:

Y2 (-“l-f'-)z |E1 - cos Aty)Z + If:é'ﬁ sinakt-gl

Necessarily, m:t'2 > I, and one may easily prove that the expression

within the brackets cannot get larger than 4; hence »
XY < ouF
and, since the drag, equation (5c), is still less than one-half of that,
sliding will never occur again, once the spring-back motion has started.
Some of the possible motions are shown in figure § for the following
data (ref. 1):
pF = 4,840 1b
T = 54.4 1b in. sec®
a = 0.286 1b in."l gec?®
k = 4,470 1b in.”t

r = 16.50 in.

The diagrams lead to the following conclusions of general validity:

e U — — w——— ———— —— ——
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During the spin-up period the deflection varies periodically
between O and 2pF/k. The average of the spring force ky is pF,
the spin-up drag.

In the spring-back period the deflection varies periodically with
the average zero. Since the amplitude of this vibration depends on the
landing speed and on the coefficient of friction, it will be different
in successive landings. In the extremes, it may be zero or equal to
the peak value of the spin-up period; that is, the force ky may be
as high as +2uF. The time average of the absolute value is then L.2ThF.
When analyzing drop tests, one may expect eny value within these limits,
and an unsuspected change of U mey present puzzles or may be called upon
as an excuse for scattering results. In design work, however, one must
consider the worst, that is, the case with the greatest spring-back force.

The case TF = Constent reveals some essential features of the drag-
force problem, but it is not realistic enough for immediate application
to a landing gear. This will be possible if it is assumed that F
increases linearly with time, say

F=Ft for t20

with constant F. This must be introduced into the differential equa-
tions of the spin-up motion, equations (1). 'Their solution is then

(oo

In this case, the displacement y represents a monotonic movement
in the direction of the drag, but with a velocity dropping periodically
to zero.

The spin-up phase is again terminated at a time tt when the rim
of the wheel has reached the velocity Vi, of the ground, that is, when

s

+

8

!
i

2
(1 - cos Noy + 2 ttz) = Vy
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The spring-back motion is again described by equations (3) with the
only difference that now the values Yy, ¥y, and oy must be used

which result for t = t{ from equations (6). It is shown in appendix A
that the spring-back motion cannot be interrupted by phases of tire
skidding which would require a separate analytical treatment.

The motion is represented in figure 5 for some typical choices of
the transition time t%4. During the spin-up time the deflection is

never far away from the static value ygig¢ = pFs/k, and the amplitude

of the spring-back vibration would not be much different if the static
deflection were used for computing y¢ and Yt'

One may, therefore, do so and compute the greatest deflections :Ln
this way:

Given ﬁ', u, end Vi, the time needed to spin the wheel up is

by = L[k _ 2L
r I-’F k
the deflection at this time,
T S :
m o 2IpFVy
and the rate of deflection,
. ¥ .
y’b = = %

2+I+mr
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The maximim of the force at the axle is kY. The average is zero,
but the average of the sbsolute value is 2kY/x = 0.637kY.

DIFFERENTTATL, EQUATIONS OF LANDING IMPACT

In this section the landing impact is investigated under the
following assumptions: At the beginning of the impact period the wheel
does not rotate (or at least not with that angular velocity which is
required for rolling). There are friction forces between the wheel and
the ground and inside the shock strut which influence the impact force.
The axis of the shock strut is vertical and lies elther in the plane of
the wheel or in the plane of symmetry between two equal wheels.

Equation of Oleo Strut

Figure 6 represents an idealized section through an oleo shock
strut. The piston is shown separately with the forces applied to it.
The force FP is the resultant of the oll pressure acting on the surface
of the piston. It has been shown earlier (ref. 2) that this force is
composed of two parts, that due to the air pressure in the upper
chamber Py eand that due to the pressure difference Py = Py between

the two chambers:
A11)0 + pA23 x2
2
EL - (Alx/Aozo):I7 2A3

The forces N; and N, bhave to balance the horizontal force H

at the axle of the wheel. Since the vertical forces make only small
contributions to the moment equilibrium, one may write with good
approximation:

FP=

1] -8 -X
Ny =H
1 a+ x
1
No=H
2 a+ x

These forces are transmitted through normal pressures in the contact
area between two cylindrical surfaces. This area will extend over a
certain part of the circumference. The length of the arc (fig. T) in
which the two parts are in contact depends on the elasticity of these
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parts, and its central angle may be anything between 0° and 180°. 1If
the angle is lerge, part of the contact pressure contributes only with
a component to the resultant N; or N,, while the total pressure

contributes to the frictional force. Therefore, if one simply puts

T = ugN, it must be expected that the coefficient pg is greater than
that for plane surfaces under similar conditions and that it depends on
the wall thickness of the cylinders and on other parameters which may
influence the size of the contact area. One of these parameters is the

force N itself, so that the relation between T and N is necessarily
nonlinear.

These considerations should be kept in mind when results of dif-
ferent tests are compared. However, the present information on the
value of the coefficient of friction is so scarce that i1t seems more
than good enough to write

Ty = ngly
T2 = usw2

with a coefficient of shock-strut friction pg; somewhere between 0.02

and 0.15 or still more (ref. 3), but assumed to be constant throughout
the stroke of the shock strut. It follows that

2l -~ a - x

Ty + Tp = pel 55—

If the force H changes sign, the points of application of the
forces Ty and To will change, but their direction will still be

vertically downward. The formula Just derived will remain correct if
|E| 4is written instead of H.

The force F, must be in equilibrium with FP’ Tl, and Tss
whence:

3

A phy>

F, = 1Po + = + g |H|——27' -~&a-x (7
a+ x

[ - (Alx/Aoon 7 2A32

T T U P U S
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This equation holds true as long as X% > 0. When the rate of stroke
changes sign, the second end third terms to the right must have a minus
sign. However, for the reverse stroke other changes must be made which
have been mentioned before (ref. 2) anmd of which little is known so far.

Equation (7) relates ¥y to the stroke x and its first derivative
and may be called the differential equation of the shock gtrut. The
orifice area A3 depends on x, vwhile H may be a given function of

time or may be related to F; by another differential equation.

The force F,; 1is not exactly the force transmitted from the wheel;
otherwise equation (7) ought to have a term which represents the inertis
of the piston. This term has been omitted here because it is simpler to
take care of it in the equations of motion, lumping together the masses
of the piston and of the wheel.

When the shock strut is fully extended, the air pressure p, presses
the piston with the force pA; against its seat. As long as Fy < PAys

the shock strut certainly cannot be compressed. But, if there is a
horizontael force H, then the friction forces T; and T, also must

be overcome, and the minimm force (Fl)l needed to meke the piston move
is the force obtained from equation (7) for x = x = 0; that is,

2l - a
(F1); = AP, + Bl == . (8)

In the early part of the landing impact, before F; heas built up
to this limit, equation (7) must be replaced by the equation x = O.

Equations of Motion

When the horizontal deflection of the landing gear is taken into
account, a three-degree-of-freedom system must be considered (f:Lg. 8).
The mass my represents the airframe. It moves only in a vertical

direction. The total unsprung mass of the landing gear is . It

represents the inertia of all parts which move vertically with the
velocity %x,. Because of the bending elasticity of the landing gear,

the wheel moves also in the horizontal direction, but only a portion of
the unsprung mass participates in this movement. This portion will be
called m3

The maess g is held horizontelly by the spring k3 vwhich
represents the elastic stiffness of the landing gear. As the shock strut
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collapses, the spring constant k3 will increase. This effect will be

neglected in the present investigation, since it is not expected that
the influence of this varigbility on the vertical impact is important
enough to make additional computational labor worth while.

The member connecting the mass mp with m; 1s the oleo strut,
the spring kp represents the tire, ¥, and H are the forces in the

springs kp and ks, respectively, and ¥, as given by equation (7
is the force in the oleo strut.

In the 'study made here it is convenient to assume that the model
(except for the mass m3) moves only in the vertical direction and that

the ground moves with the speed Vy, under it.

The motion during the landing impact, as far as 1t is studied here,
may be divided into three phases, which are governed by different sets
of differential equations:

Phase one: The motion before the prestressing of the shock strut
has been overcome.

Phase two: The remainder of the spinning-up of the wheel.

Phase three: The motion which tekes place after the wheel has
been spun up. This phase terminates when the stroke x has reached
its maximum.

- The fourth phase, the recoil motion, is not yet accessible to a
retional analysis for the reasons already mentioned.

Phase one.~ When the landing gear strikes the ground, the wheels

are for some time the only elastic element and the oleo strut is inoper-
ative; that is:

{

The whole mass mj; + mp moves then as a rigid body and is acted upon

by the load Wi (weight minus 1lift) from above and the ground reaction
F, from below. The latter is

Fp = k%, _ (92)
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and the equation of motion is

(my + mo)p + koxp = Wy (9b)

This is a differential equation in X, only. When it has been solved,
the force in the shock strut is found from the egquation of motion of
the mass my:

Fy = mp¥p + KX (9e)
The drag force is
D =y = p k%,

It produces a lateral displacement y of the mass mg according to
the differential equation

BrkpXs (94)

a5 + vy

and an engular velocity w of the wheel

t
m=f Pir-at
0

In this equation, r represents the distance between the wheel axis
and the runway. Because of the elastic deformation of the tire, it
decreases during the landing impact and might be written as

I‘=I‘°-x2
\

However, the deformation of the tire has a fore-and-aft asymmetry such
that the vertical force is moved rearward and restores part of the
moment which the drag loses through the decrease of r. Since exact
information on this subject is hard to obtain, it may be good enough
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to assume r as a constant. This has been done in all examples prepared.
for this report, but one may, of course, easily introduce any other
assumption which is Judged to be better.

With r = Constant one has

uikerft

. X2 ds (%)

Equations (9a) to (9e) determine the motion during phese one of ‘the
lending impact. This phase is terminated when F, as computed from

equation (9c) reaches the value (F1), &lven by equation (8).

Phase two.~ In phases two and three x; and x, are no longer
equal, and the vertical motion of the masses m; and m, must be con-
sidered independently. This yields the two equations:

m¥ +F =W (10a)
my¥X, - Fy + kX, = 0 (10b)

Besides the displacements, these two equations contain as a third
unknown the shock-strut force F,. Therefore another equation is needed,

the differential equation of the shock strut, equation (7). It contains
a new variable, the horizontal force H, equal here to k3y, whence

3
F = Ao, + pA> 2. hgks gu‘-:—xhrl (10¢)
v4 op. 2 a + X
[1 - (Ax/Az o)] 3

This equation seems to introduce two new unknowns, x and y. One of
them stands merely as an sbbreviation;

X=X =X

- ey ¢ iy et rm——a e - e
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but for y another equation is needed, equation _(9d) for the motion of
‘the mass Iz . These four equations for the four unknovms x;, X5, Fy,

end y must be treated together.

When they have been solved, equation (9e) may be used again to find
the angular velocity w. The backward velocity of the lowest point of
the wheel is then y + Tw; and, when that becomes equal to Vp, DPhase

two is terminated.

Phase three.- In phase three equations (10a) to (20c) of phase two
are still valid, but the drag force on the right-hand side of equa-
tion (94) is no longer p kx5, but jJust enough to keep the wheel

rolling without skidding. Equation (94) must therefore be replaced by
equations (1a) and (1b) in which the notations m, k, u, and F must
be replaced by mz, k3, e, and Fy, respectively. Since the wheel

does not skid, there is also the kinematic relation

which serves to eliminate @& from equation (1b). Then the drag 1y

may be eliminated from both equations, and thus the equation is obtained
which takes the place of equation (965:

(m5+—:§)§+k3y=0 (104)

In each of the three phases the differential equations represent
an initial~value problem. All displacements and velocities at the
beginning of the phase must be equal to those obtained for the end of
the preceding one or, in phase one, equal to those which the landing
gear 1s supposed to have at the moment of first contact with the ground.

SOLUTION OF IMPACT PROBLEM

Phase One

Since the shock strut remains at rest during phase one of the
impact, all complications which arise from its nonlinear behavior are
absent. The load Wy may certainly be assumed constent during the
rather short time interval, and equation (9b) may be solved at once.
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The initisel conditions are:
t = 0: X=%=0, X =x,=V
and the solution satisfying these conditions is
cx, =L M) + - sin At
xl_x2_-k—2-( - cos 1)""'):18 1

with

A2 2

Tm +omg
This must be introduced into the right-hand term of equation (9d). The
solution y bas to fulfill the initial conditions

t=0: y=0, y=0

and it will consist of a static deflection, a free vibration with the
frequency

Mg =\[5fns
and a forced vibration with the frequency )\l:

2 2
pW N cos Azt - Az cos A\t
y=ttps 3.5 1

+

pTVk27\3 )\38111 7\113 - 7\1 sin )\3‘3
BT

B I e e HiE ST A AU
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The force F; follows from equation (9c):

1 -
Fp =W - W) —=— cos Nt + —= —=— sin At

Since the unsprung mass m, is small as compared with m, , this
formula may be replaced by

Fy =W;(1 - cos %) + -;?_2— sin Mt (11)

Phase one ends when the force F; bas built up to the value (Fl)]_
as given by equation (8). With H = kzy this yields the following
equation for the duration +4; of this period:

F1=Alpo+usk3?l-a;-?-y for =t (12)

When the expressions just found for F;, and y are inserted here, a
rather unwieldy transcendental equation will result,

Fortunately, however, phase one is of rather short duration. In
the numerical example used in reference 2, A\ = 10.98 second~l and

t; = 0.0088 second; hence, Mty = 0.097 = 5.5°. The situation is not
quite so favorable regarding 7\31'. 5 but usually it is small enough also

that all trigonometric functions may be expressed by a few terms of this
power series.

Instead of introducing these series in the preceding equations,
one may more conveniently make a fresh start, assuming power series for
the unknowns,

x1=x2=i%’°k

k=0 ™

yo> g

k=0
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and introducing them into differential equations (9b) and (94). Pro-
ceeding in the usual way, one obtalns the following solutions:

W W
- x = 1,22 23 1Mk 1 K5
X =% =Ve+ 2Ly %“”‘1 e Mt PR T L
(13=)
L =] L S W RN
- y = (6 +2h 7\121-. +e. . (13b)

As before, m, may be neglected. If this is done, equation (9c) yields

- 1 2.2 1 5 _
Fy = V6 + W0 %7 - N W (13¢)

g 2’

One may now put t = t; in all these series and then introduce them
into equation (12), which then becomes an equation for tl. If terms
beyond t are discarded s it reads as follows:

1 2 1 21 - a 1 Hrkp
KVt + 3 Wk %6 - Z KoV Pty = Appg ¥ hgks S8 2 - Ve,

In this equation the terms with t12 and t13 are not large, and it

is best solved by iteration. One obtains a first approximation by
neglecting the small terms altogether:

by = Aypo/loV (1ke)
and proceeds then with the help of the formula

A
g v 21P§ 3 . 1 (240)
k2v|:1 - 3(7\1  lphtghs &-i—a) tl] + 2 ]

fwtr e tw v = s mm it e e e— A AWt £ pea—e = p w—
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which yields a sequence of improved approximations when one introduces
for t; on the right-hand side the best value so far available.

After %; bas been computed, the corresponding values of x) = Xp,
¥, ¥; and Fq may be cbtained from the series forms (13) for these
variables.

In order to check the progress of the spinning-up, it is necessary
to find the angular velocity o = @; of the wheel at © = t;. It is

found from equation (9e):

Rpkor o W
W = (% V'bl + ']g i -A:La".';l5 - -al'i—l: V)\12t11> (15)

I

Numerical Integration for Phases Two and Three

Exact solution.- As soon as equation ("{) comes into action, the
problem becomes nonlinear and a closed-form solution can no longer be
expected. Among the different methods availsble for a numerical solu-
tion, the most flexible is the step-by-step integration. Since it is
possible to control the error and to keep it below any desired limit,
this method can be considered as exact. Im its practical application,
however, the requirements of accuracy are usually not high, and its
merits must then be judged by the time needed for the computation. The
method will now be applied to phases two and three of the landing-gear

impact.

Phase two: In phase two the sp -up of the wheel is completed,
and the motion is described by equations (10a) to (10c) and (9d). Since
these equations are rather involved, it is advisable to introduce at
once every reasonsble simplification. Now it has been shown in refer-
ence 2 that the influence of the unsprung mass m, is not very large

and that in most cases it will be possible to assume m, = O. This does
not necessarily mean that Iz must be neglected also. Although nz is
smaller than m,, it controls the horizontal vibration and hence the

friction in the shock strut and it may well be worth while to have these
details.

For this degree of simplification ¥y = F,, and eguations (10a) to
(10c) and (94) may be brought into the following form:
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ml:‘:'l +F) =W (16a)
Fp = k%, (16b)
msir' + kgy = wFy ‘ (16¢c)

APy

+ 23 4+ pk, Sbo8 X (16a)
7 2 5 vz ¥
[1 - (Alx/Aozo)] 2h5

F, =

Bince y is always positive during spin-up, the absolute signs have
been dropped in the last term.

When these equations are solved by step-by-step integration as
explalned in reference 2, the values may be arranged as shown in table 1.

In the first group of columns (merked by the double lines) the values
for t =t; may be filled in from the initial conditions (asterisks) and
with the relation x = X; - x5. The next three groups are used to obtain

from the differential equations the values of the highest derivative of
each unknown. The computation of x for column@must be done in a
separate table, using equation (16d) in the form

[ A. 2
with
F, = A1po

e e e e s e e et e - = mee e S A  —— — . s p——— =
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Since the air force Fg and the factor B depend only on the stroke x,
it is useful to prepare large-scale diagrams for both functions from
which individual values may easily be picked during the integration.

If the numerical integration is done by one of the more elaborate
methods, the values of :22, J'El, and ¥ are copied into special inte-
gration tables and handled as described in reference 2.

If the simpler formulss described below are used, it is necessary
to group those columns together which refer to the same variable as in
table 2. Again a special table is needed to evaluate % from equa-
tion (16d), but now there are no additional integration tables. An
example for this kind of computation is given in table 3.

The most convenient method among all tested is Milne's method
(ref. 4). Tt works as follows:

When for a varisble z and its derivative 2z +the values in four
lines are known (in particular, Zp3 and Z) o, %, ., and %)),
one may find an approximate value of 3z,,; by passing a quadratic

parabola through the three points of the z diagram and integrating
the segment under the parabols over the four intervals from n - 3
to n+ 1. This yields Milne's "predictor” formula:

L] hd ll'.
Znyy = Zpo3 t &'BA_t'(zzn-a -2, 1+ 2zn) + l];—g-At Azy 3+ ...

(18)

The last term of this formule cannot be used, since the fourth difference

A ) = S = Bin o+ 6By - bip 4 By

cannot be computed, in—l-l still being unknown. This term represents

the next improvement which might be applied if more information were
available, and it is a measure for the possible error of the calculation
using the other terms only.

When this formule is applied to the present problem, identifying 2
first with X, ‘end then with ¥, values of X, and of ¥ for the
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line n+ 1 are obtained. It is then possible to.calculate X; far

this line from equation (16a), and now all the remaining integrations
mey be made under much more favorable circumstances. For each of them
the value £,,7 of the derivative in the new line is already known,

and one may use Simpson's formila in the double interval from n - 1
to n+ 1l:

Zne] = Zp1 + -‘;i(in_l + b + 2n) - -9% s A+ ... (19)

As one may recognize by comparing the terms with Aué , this formula is
much better than the predictor formula; and, when at last %X, and ¥

have been computed from %; - X and from equation (16c), respectively,
one may use equation (19) as a "corrector formula" to obtain improved

velues of x, and ¥. Looking at the terms with NG in both formulas,
one may conclude that the integration error still remaining is about

one twenty-ninth of the correction just applied, and the step At should
be so chosen that this remaining error is negligible.

Nevertheless, this correction of xp and y is not final, since
it entails corrections of Xj and y and hence most or all of the
values already computed in the line n 4 1. However, the time step

should be so chosen that the iterative process thus started stabilizes
repidly to £inal values everywhere.

The two operations described by equations (18) and (19) may con-
‘veniently be carried out with the help of two templates. They are shown
here as applied to the integration of the x2 column:

Predictor equation (18) Corrector equation (19)
-t | % X, X t-to | % X5 Xy
0.025 8%5.61 | 3.756 | -453 0.025 8%3.61 | 3.756 | -453
04 2 0.030 | 79.01 | 4.161 | -502
o +2 [TH.29]) l 8 0. ]8
of -1 |69.63 in‘g-‘i 1 of 1 [65:65]] ook 1
0] +2 |64.91] l > o] u |6h.o1|fx é;lgi 2
0, 1 ol 1 [6o.21ff [ ] 0

0.055 l | 0.055

e e p o v A= et e m s ——— A% =t s e e wearar w wem—=m e B memr mr o m— emr—
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The application of predictor formuls (18) "is not possible until
four lines of table 2 have been filled by other means. Therefore,
between the filling of the first line as described before and the con-
tinuous application of the two templates some intermediate computation
is needed. This is best done in the following way:

The first integrations which yield the wvalues of Xp and ¥ in

line 2 can be done only with the simple Euler formula, equation (29)
of reference 2, For the other integrations the improved Euler formula,
equation (30) of reference 2, may be used; and, when the line has been
completed, one may check and correct the first two integrations with
the help of the improved formulae. Of course, the whole line must then
be corrected until agreement has been reached everywhere.

Line 3 may be started in the same way, using equation (29) of
reference 2, but Instead -of using the improved Euler formuls one may
now resort to equation (19) and the corresponding template. This will
yield appreciably better results for the same width of the time step.
If the computer bas a sufficiently clear idea of the values of %o

and ¥ +to be expected in this line, he may guess them and start at
once with equation (19). Of course , & second run through the line is
needed to justify or to improve the initial guess. .

Line 4 must be handled in exactly the same way, except that here
en advance guess 1is easier, since more information is alresdy avallable.

If each line is iterated until the values therein are perfectly
stebilized, the integrations leading to lines 3 and 4 have the same
degree of exactness as those of the ensuing regular computation. Only
the first time step is less accurate, and it is therefore advisaeble to
start the whole compubtation with a sufficiently small time step. As
soon as two steps have been made, one may double the increment At,
since then the higher accuracy of Simpson's formula is available. If,
after some time, one finds that the predictor formula predicts so well
that the corrector formula finds nothing to be corrected, it is advisaeble
to increase agaln the time step as described in reference 2.

The methods of numerical integration described here have the dis-
advantage of all numerical solutions of initial-value problems: Any
error once made, whether a mistake or a rounding error, is carried on
through the compubtation without much chance of later discovery. It is
therefore advisable to develop difference tables for X and y in
separate tables and to watch the regular change of figures in these
colums, Any irregularity in one of the differences is & hint that
some mistake has been made, and the integration should be halted until
the mistake has been found and corrected. Additionally, the more exact
integration formulas (31) of reference 2 may be applied at any time to
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the difference scheme as a check of sufficient accuracy of equations (18)
and (19).

Tn tables 1 and 2 colums (1) end nave been added, in which
the force Fy = kpX, is integrated, and velocity ro + y is com-
puted with the help of equation (9e). From it the time + =ty is

found when the wheel is fully spun up and when this integration scheme
must be modified.

Phase three: As soon as the wheel is fully spun up, eqguation (9d)

must be replaced by equation (10d). This new equation is independent
of the other three and mey be solved in advance:

y=Ysin7\3'('t-T)

with
2
kxx
N2 _ )
()\5) m5r2+I
sf 2
'!2=y2+<—t—)
t 7\31
and
tam Ny (g = T) = 2
¥y

When y has been calculated from this formula, eguations (10a) to (10c)
may be subjected to numerical integration. The table used for this

work is quite similar to teble 2, except that colums (7),

and @ are now dropped. The computa.tion may be continued until x = 0.
For the recoil motion (% < 0) the radical in equation (17) must be teken
with a minus sign and additional changes in this formuls will be neces-
sary if foam is present in the oil which flows back through the orifice
of the oleo strut.

Numerical exsmple.- The example which has already been used in
reference 2 has been used again to test the integration procedures
recommended in this report and to obtain some information on the influence
of shock-strut friction on shock-strut performance.

t

i miea e s r e v t e R Ay A AW e vmm e o ew—— —_— —r - —— A= % e m e Tk e e = e
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The following dats have been used in this

AiI'P].a.ne IﬂaSS, ml, lb Seca/in. e ® e o o o o
Unsprung mass (peglected), mp « « « « « o o &«
Wheel mass for y-vibration, mz, 1b sec2/in.

Vertical velocity, V, in.fsec .« . « « . . .
Horizontal velocity, V4, in./sec . . . . ..

Landing-gear loed (weight minus 1lift), Wy . .

Spring constants:
Tire, ko, 1bfin. « ¢ « ¢ v ¢ ¢ o o o o o

Horizomtal, k3, 1bfin. « « « o ¢ o o o o
Shock-~strut data:

A1=A2, sq in. .
A3,sq_in.................

AgzofAy, in. . .
Po, 1b/sq in. . .

p’ lb m.-ll- Seca ® & @ & o 8 ° ¢ s s s o

7 ® L] * L] L] L] L] [ ] L4 . .. L] L] L] - L] . L] L] - L]
Z’ j_n.. e 6 ®o @ ® e ©® & e & © © o o s & s o
8., m. ® ®© ® & &6 ® ° ® e e & e & o & s o+ o

Wheel dstas
I, 1bin. sec® . . v v v v v v v e e 0 e

r’ in. . . . e« o o = s ® e o . . . e« o o .

Friction coefficients:
Wheel and Tunway, Wy =« o o o o ¢ o o o o o

Piston and barrel, g « « ¢« ¢« o« o o o o o o

Since phase one is rather short, the only

items

duration <t; and the values of all variables at the
Equation (1lka) yields as the first approximetion for

+the phase:

b = 0.00822 sec

- NACA TN 3217

e e e s« o 103.6
S ¢
e e e e 3.8
c e s s e . 120
« e s e .. 1,672

e e e e e . 13

c t e ... . 68
c e s s e . 20

-aooonno.5
....-..o.l

of interest are its
end of the phase.
the duration of

and then the first application of equation (14b) yields the improved

value

_ 0.00822
1 - (106.3)(0.00822)2

t1

= 0.00828 sec
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The improvement is so little that a second application of equation (1kb)
does not improve the result further, and % = 0.00828 second is final.

Having calculated +t7, one obtains from equations (13) all the
velues for the end of phase one:

(¥1); = (¥2), = 0.995 in.
(*1); = (*2)1 - 119.5 1n. /sec
¥, = 0.018 in.
¥, = 6.56 :i.n./sec
end from equation (15):
@y = 0.751 sec™l

These are the initiasl values for phase two, and from them the
numerical integration must be started.

Since the numerical integration is rather time consuming, a Judicious
choice of the time step At 1s of great importance. The accuracy
requirements of landing-impact calculations are not very high; average
slide~-rule work is certainly enough. To get an idea of what is really
necessary to obtain this degree of asccuracy, the numerical example of
reference 2 has been repeated with wider steps and it has been found
that there is no need of being very particular about the sharp breaks
in the A3(x) curve.

Therefore, for the present computations the small time step
At = 0.0025 second hes been used only to get a smooth start, but when
four lines were computed, the values for t - t; = 0, 0.0050, and 0.0100
were entered in a new table which then was run with At = 0.005 second,
using Milne's method. For the first step in this table Milne's predictor
formuls (18) could not be used since it requires that four lines be
already established. Instead, an advance guess was made for the result
of the first integration, and then Simpson's formulae could at once be
epplied.

+

e 4 mAm et o AR o ——————
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In each time step equation (17) must be used which contains three
functions of the stroke x. One may speed up the work by plotting these
functions at a large scale. In order to preserve accuracy, these plots
should be drawn to a sufficiently large scale. The plots used for the
computations described in this report bhad twice the size of the samples
given in figures 9, 10, and 11.

While the computation in phase two proceeds, an occasional check
of ® 1s made to find the time when the wheel is fully spun up. This
occurs at t - t; = 0.100 second. Then phase three begins, which

requires only minor changes Iin the arrangement of the computation table.
The work has been continued to + - t; = 0.18 second. The results are

represented as solid lines in figures 12, 13, and 1%, together with those
obtained for p,. = 1.0 and with the results obtained previously for the

frictionless case.

Figure 12 shows that the friction in the shock strut reduces the
stroke x, but that it tekes some time before the difference is felt
in the downward motion of the airplane. Figure 13 reveals more details
of the motion. There appears at once a substantial difference in the
rate of stroke X. When the orifice opens, the rise in X% is moderated
by the friction, while after transition the spring-back motion produces
e marked waviness of the curve quite different from the continuous
decrease of X 1in the frictionless case. The zero of Xk, that is,
the maximum stroke, is reached earlier and has, as figure 12 shows, a
lower value the higher the friction. The oscillations of the spring-
back phase are also visible in the force diagram (fig. 14) although
there they are not so pronounced. The peask value of the impact force
is considerably. higher than in the frictionless case, and it varies
widely with p.. This indicates that the coefficient of rumway friction
must be fairly well known if computations of the kind presented here
are to be of practical value.

Approximate solution.- The numerical integration as described on
the preceding pages solves the problem and ylelds reliable results, but
the amount of computation involved i{econsiderable. Therefore, it is
desirable to develop methods which are sufficiently accurate to satisfy
the needs of the designer, but which omit cumbersome details,

One way to speed up the work is to use larger time steps. In
attempting this, one must contend with the rather high frequency of the
horizontal vibrations. ’

In the example, the frequencies are Az = Uk.8 second™’ in phases
one and two and As' = 37.37 second™ in phase three. With
At = 0.005 second, as used in the computation, one has about seven
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intervals for one quarter period (the rise of sin Azt from O to 1)

vhich is sufficient for good representation. However, a serious
Increase in At will not be possible without losing the details of the
y-vibration.

This raises the question of whether these details are really
important for the main purpose, the determingtion of the maximum
force F,. A negative answer is suggested by figure 5 which shows that

during the spin-up the y-curve wriggles around the straight line repre~
senting the static deflection

y:D/k3

and that the deviations from this line are never very large. When one
plots in the same way y = y(t) from the example represented by fig-
ures 12 to 14, the diagram shown as figure 15 is obtained which confirms
this idea to some degree.

It seems, therefore, reasonable to drop the dynamic term m3if in
equation (16c), at least in phase two. If this is done,

¥ = Fy /s

may at once be introduced into equation (16d) or (17). This yields

and, with equation (16b),

When this equation is used, the time step is essentirlly determined by
the variability of the effective orifice area A3 » that is, by the shape

of the metering pin.

e e e e e mrmm = —— v — - m— a—— —— - —_——— —-—
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There seems to be no advantage in applying the same simplifying
assumption also to phase one, since there everything is already simple
enough. However, if this is not done, it will not be possible to fit
-the two phases together at + = t;. For this reason it is necessary to

assume from the very beginning that ms = 0.

The formula for x; = Xp is then the same as before and so is the
expression for F;, but

W \')
y=tr-—l-(l-cos 7\lt)+prk2 sin Mt
*3 5h

Also equation (8) is affected, since now H is equal to the drag D,
that is,

and the condition Fl = (Fl)l which determines tl appears in the form

AlI’o

21 - a
a

Fl=
' 1 - pgiiy

This particular value of ¥, mey be computed from the data of the
problem and then introduced into equation (13c¢) where one puts + = tp.
This yields an equation for t4:

A2,
21 - &
1= ey a

1 2 1
k Ve + 3 LA 3 VA 26, 7 =

It may be solved by iteration. The first approximation is
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and, starting from it, improved values may be obtained by using the
iteration formula

1P

Ch (1 - g &1_;_&) (i + L2y, - : kamlatlz) =)

These formulas teke the place of equations (14).

It is not possible to extend the same idea of approximation also
to phase three. There, the static deflection y is zero, and with
¥y = 0 one would not obtain any shock-strut friction at all. Since in
phase three it is possible to compute y in advance, the need for
simplification is less urgent. One must, of course, match the value of
Y=Y &8t t =1y, the end of the spin-up. As a rule it will be

possible to neglect the influence of ¥y and to write simply

¥y = ¥y cos 7\3'(1: - ty)

>
for t Z tt.

Further simplification: TLarge steps.~ The simplification ivtroduced
in the preceding section removes the essential obstacle to using large
time steps. The deviation of the solid line from the dotted line in
figure 16 shows the error introduced by the chenges in the equations,
without additional inaccuracies which might be caused by wider steps At.

One may now ask how far one may go in increasing At without losing
much more in accuracy. This has been tried in the example by repeating
the computation with At = 0.02 second. The computation for phases two
and three has been reproduced in full in table 3., The quantities Fo»

B, and A3 were read from prepared graphs as functions of x.

The results of this integration have been marked by the small
circles in figure 16. They check so well with the solid curve that one
might feel tempted to increase the time step still more. This, however,
seems inadvissble, not because of the accuracy of the mmerical integra-
tion, but because a certain number of points are needed for plotting the
curve,

When one inspects the column |y| in the second part of the integra-
tion table, one recognizes that there are sharp ups and downs and that
the values representing the influence of y on the shock-strut frietion

e e s e T e Sac e e T e i ——— e . e o e} e o S pn e i e« —
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are rather arbitrary samples. It seems therefore wilser not to rely on
the incidental appearance of large and smell values in this columm, bub

t0 replace the varisble y by its average, which is -12? Yo

Analytical Method of Solution

As an alternative to numerical integration of the differential
equations of motion an analytical method is developed in this section.
This method has several advantages over numerical integration: (1) 1%
provides a start which takes account of the singularity which exists in
the solution at time <. (2) Tt allows much larger steps with the

seme accuracy. (3) It tekes into account sharp breaks in the A3(x)

curve. The disadvantages are: (1) The computation scheme is not so
simple as that of step~by-step integration. (2) More skill and judge-
ment are required of the computer. (3) Curve fitting is needed in every
interval.

In the analytical method the time is divided into a series of
intervals with the nth interval extending from 'l:n to tpyp. The

length of successive intervels is determined during computation, as
will be discussed later. Certainly any discontinuity in the slope of
the A3(x) curve will require termination of an interval.

In each interval the dependent variables x,, x5, X, ¥y, and o
are developed in power series in terms of a local time varisble

‘I'='t—‘bn

In the section "Phase One" this has already been done for phase one, and
‘tha:l: calculation represents the interval =n =0 <for the analytic method.
For the intervals following, the form of the solution depends on whether
or nob X becomes zero. An interval where this does not happen will be
called a regular interval; one where x starts from or reaches zero
will be called a singular interval. Since X = O at the start of phase
two, the interval n =1 of the analytic solution will be a singular
one. However, it is more convenient to explain the regular interval
first.

Regular interval.- For the purposes of this analysis it is desirable
to revise the form of the differential equations somewhat. Equaetions (10a)
and (10b) and equations (10b) and (10c) (neglecting, as previously, my)

mey be combined to eliminate Fl:

w4
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m¥y + kpXy =Wy (222)

3
A pA,
1P0 + 2i2+p. 27.--:5\.-}{y (22b)
7 o 2 sk5 a+ x
[1 - (g 0)] 3

ok =

Equation (22b) is then solved for % as

43P,

J.{=A_3 — % - ..ps.]fégz—;—a._:_xlyl (23)

pdo” k2[ i (Alx/Aozo)] 7 2 awx

In order to make a series solution of this equation feasible several
approximetions are introduced.

First approximate in the interval of expansion the term

£,(x) = APo -
k2[1 - (Alx/Aoz o)]
by a linear function
£1(x) = g, + #ix (2k)

Figure 17 illustrates fl(x) end the straight-line segments used to

represent it for the example treated in the section "Numerical example."
Similarly, the function

' k
:fz(JC)=M3321"a"‘?—c

ka a+x

[ e e mr e T - i A = = = Ry e, = < - A —T———E g — T o — B n—
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is approximated in each interval by a linear function
£o(x) =8 + 0% (25)

This approximation is illustrated in figure 18. Finally, a parsbolic
(or linear) curve

Ay = (A3)n(1 +ok+ 3 caga) (26)

with
E=x - (x),

is fitted to the graph of A3(x) to represent this fumction in the nth

interval. This form seems best suited to £it the orifice curve since it
is an exact representation in every conical section of the metering pin
(see fig. 9, which consists only of a straight line and parabolas) .

Putting the sbove simplifications into equation (23), one obtains

%= Az —2]23\/;2 - ¢° - ¢lx - (80 + 831x) |y| (27)
pho

To make the equations more managesble it is convenient to introduce
the following parameters:

NZ = kpfm
A5 = ks /mg

Wi¥ = Wy /m
k= \/2“2/ pho”
Ky = Ko ms

k3 = Hykor/I
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The resulting full set of equations (from egs. (9d), (9e), (22a), (26),

and (27)) is thus:

Ry + NPxp = Wy (282)

% = k35 |fxp - fix - O5]y[- 81x3] - fo (28p)
¥+ My = rohp (28¢)

Ag = (A3)n(l +ogt + 2 02§2), £ =x - (x), (28a)
Xp =% - X (28e)

& = K3xp (28r)

The expression for A3(x) ha.s' been retained as a separate equation to

avoid overcomplication of equation (28b).

One may now proceed with the solution of these equations in the
interval n. Power series are assumed for all the dependent varisbles:

\N:D
il
~
Y
B
o[V
)

> (29)
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Substitution in equation (28a) ,» equating of coefficients of like powers
and application of the initisl conditions yleld

of T,
8o = (X1)n _ ’T
8 = (il)n
8.2 = -7\12b° + Wl* ?- (30)
gy = “M b o (x > 2)

o/

Equation (28b) is likewise solved by substitution and equating of coef-
Ticients of like terms. The process is more involved for this equation,

however. Upon substitution,

o« ) o k
- AN LD DT

k: 0 L] v

where (15) is the binomial coefficient, the equation can be written

Z-—i— &1 - k1 (A3) ;%bk - ¢1°k - 0gd; -

T (k- 1)
1/2

eli(%)cvdk—l'rk"séo 2%#
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Now define
k
P = bk - fiox - 8ody - 6, %@)cvdk-v
so that
. 1/2
ck -1 K El_i. S %
Z. (k - 1)! = l(A3)n<% X! T ¢o> % : ™

l_l
™

(31)

But returning to equation (28b) and inserting the initisl conditions

Po = (¥2)n
.o = (%),
€= (i)n
a5 = (¥),

one finds

¢ = lc1(A3)n\/ho - ¢1co - 8545 - 05858, - ¢o

ey = K1(83), 8o - £,

e e e e e e e ——— ——— - v et = m————— e - e =
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This may be used in equation (31) which then gives

o0 L o0

Sk k-l_c(1+2q iﬁ—k-rkllazgg-rk
T (x - 1) 1 19 o k!

where also

o=
1 2(8s - $o)

The expression within the parentheses raised to the one-half power in
the sbove equation may be expanded now by the binomial theorem

1/2 1 1.2, 1 43
(L + s) =l+ss-gst+=8l+. ..

When this is applied to the problem at hand, it follows that

T (x - 1)!

‘ 2
[+1] NB [++]
z_“s__#-l.;cllwgk_:s-%nla(g%#) :

The expression within brackets here must be reduced to a single power
series and then multiplied by the « series. Finally, equating coef-
ficients of like powers.of = -will-yield:
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ey = (x)y )
e = iy (As)n\fBo - o
cp = c1 (ag + mBy) | - (32)
3 = °l(°°2 + 2 mBy + mPp - Tl12’312)
¢ = cll:% + mPBy + SapmPBy + 3(ag - by (’1152 - '112‘312)]
. o

where
X
Br = b - Picx - 09y - 6 ;(5) Coldxcy

The solution of equation (28c) is similar to that of equation (28a)
and ylelds .

’w
d = (y)n
% = O - (33)
G = Kgby o = My p k>1

v

Likewise, substituting and equating of coefficients in equation (284)
produce .

g = A

@y = C0y
- ' (34)
02 = 020'1 + 0120'2

et e et 4 m e m — e = e e o e —— - - o ——
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The last two equations (eqs. (28e) and (28f)) are easily handled.
From equation (28e) it is evident that

bx = 8 - cx _ (35)

Finally, equation (28f) is solved by substitution of the series for Xo
and direct integration:

q
a') = K5 % X! 1‘k
- (56)
-] b.

Sufficient information has been amassed to find all of the coeffi-
cients &y, by, cx, 4y, and ox. By inspection of the relations

between the coefficients, it can be seen that starting from the coeffi-
cients determined by the initial conditions (a.o » 81y, €1, G, 44,
and (A3)n) the other coefficients can be found successively. This
must be done in some such order as by, c3, by, o3, 8o, co, bo,
do, ap, and so forth. The w series can be computed afterward, since

the other equations do not depend on w.

Series solutions have now been found for the variasbles x,, xp,

X, ¥, apd o in the intervael of expsnsion. It would seem as if the
solution were complete. However, there are still difficulties to be
overcome. Since the natural frequency of the horizontal vibrations of
the wheel is high, the series expansion for y converges too slowly to
be of use in representing y in equation (28b). :

It is possible (see appendix B) to obtain a more rapidly convergent
solution for y(t) of the form

¥y = (do - d,o') cos X5T + %‘3—(&1 - d.l') sin ?\37 +4,' + d.l'T +

L gt L 515
o T 55 95T (37)
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where
K
2
do' = — o o
A5
IC2 \
d. ' = =~
1 2 1
A3
d,'l" = K2b2
ds' = Kab3

This is a very rapidly converging solution but is still not suitsble
for use in equation (28b) since it contains trigonometric terms. It is
necessary thus to fit a parabolic approximation to this curve using the
initial value and slope plus a chosen quadratic (or cubic) term:

1
Y= dg + AT+ S dphP (38)
or 1 3
y=d°+dl'r+-6-d3*—r
The coefficients of this formula are used to represent y in equa-

tion (28b). The solution for y, equation (37), carried to the fourth
power requires b,, by, and by, but these coefficlents may be found

before d.2* is needed.

The series solution for x; is adequate for use in equation (28b) R
but it still may sometimes be desirable to have a more rapidly convergent
solution for this variable also. The same procedure as outlined in
appendix B yields when epplied here:

X3 = by cos ?\l-r+-l—bl sin T+ cg + cl-r+-%Wl*'rz+

M

'é]if ?\la(ca - W¥) oy 1‘%‘6 ')\12c5'r5 + .. (39)
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When the spproximate form, equation (37), for y is used, the
solution is now complete and usable. One thing remains to be discussed,
the question of the length of each interval. This depends on several
factors. The interval is restricted by the need for accuracy of the
approximations for Az(x), £,(x), and fo(x). The A3 approximation
especially must be e accurately, as the solution for x is very
sensitive to this variable. As has been mentioned, the interval must
end vherever there is a sharp break in the Az curve. The length of

the interval is also limited by the need of obtaining sufficient accuracy
in the y(t) approximation. Finally, convergence of the series repre-
sentation of x must be considered. One of these factors will deter-

mine the interval length.

The value of ¥y + ro must be watched as in the numerical integration
method, since transition to phase three occurs when

3'r_+ra)=Vh

After this time +t = tf, the deflection y is calculated in the same
way as described for the numerical integration in phase three.

The intervel need not necessarily end at t = t. Since y 1is
continuous, the approximation equation (38) may still fit for some time
beyond the transition to phase three.

Singular interval.- At the start of phase two ('b = t31) the rate
of stroke venishes (X = 0) and the same happens again when the maximum
stroke is reached and recoil begins. The vanishing of % gives rise
to a particular difficulty, the source of which is found in equation (23).

This equation may be written

X = “1A3(x) \hr(t) ' (231)

with the abbreviation

AP, _ Bek3 07 ~.a - xlyl

¥(t) = % -
ka[l - (Alx/Aozo)] TR =



NACA TN 3217 L5

Upon diffgrentiating, one has
o8 [ ] A &
% e <A§ Vi + i)
2|y,
which, with the help of equation (23'), may be written as

2

cob. w2, 0y
x-A3x 2A3}'t (,-I-O)

Since § does not happen to be zero at the start of phase two, this
equation shows that X is infinite. Thus there is, at +t = t;, a
singularity in the function x = x(t) which prevents the use of the
ordinary power series (29).

Although power series (29) are not applicable in this intervel, it
is possible to handle it with series in half-powers of T =1t - t;:

X1

I
oM

E

5

- I R

Equations (28a) and (28c) are solved as before by substituting end
equating coefficients. The result for equation (28a) is
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& = (X1)p . A
g’l = 5.3 =0
ap = (il')n - (h2)

gy = -120%5, + 120 *

g = -3k - 1)(k - 3)7\12'51;_4 (x > ub
Similarly, for equation (28c): .
d = (¥),
('1'1. = 53 =0
5 = 2, - (43)
G = 4(x - 1)(x - 3) (uzi'k - 7‘525k-l+) (x > 3)

./

Next consider equation (2&1) which expresses A3 in terms of x and

introduce series (41). Since it will be shown a little later that
G = Co = 0, +the expressions for the first few coefficients aj become

extremely simple:

"\
a.°=l
c-il=5.2=0 ? ("l')-l-)
o5 = 018 g
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Equation (28b) must be considered in more detail. After substitution
of the series, equations (41), this equation becomes

S :
. - o _ 1/2
03 Fle S BT Ay )
o = o = o =
Using, as previously,
0 o o 3 -] k
$3005 505 o ges |
0 0 0 v=0
one finds
= & P 2 & = )
2 - -
Zl (—k—-_l):- T = 2K1(A5)n % -k—z- ’I'k/2 {% -]-:T[bk - ¢lck -
1/2

oy -0y 3 B8, | 2 g,

The expression within the braces to the one-half power may be simplified

by introducing
-k -
Ek = 45k - ¢]_ak - eoak -8 vgo(lﬁ)avdk-v )

which yields
- k-2 o = 1/2 -
ST et SR S e

- e e -

(45)
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It is profitable at this point to look at the result of applying the
initial conditions to equation (28b). For T =0 each of the series
of equations (41) consists only of its first term, and ‘one has

- 1/2
(i)n = "l(A3)l(bo - ¢lao - eoao = eOEo&o - ¢o)

1/2
F1(A3) 1(50 - ¢o)

and, since (X), is zero, it follows that

BO-¢0=O

Therefore, equation (45) reads simply
1/2
% 3 Bx x/2 % k/2
— T = 2k (A — - 46
2w u 3”‘@“ % k! (4e)
Some preliminary conclusions may now be drawn before the complete solu-

tion of the equation is attempted. The above equation in expanded form
reads

817—1/2 + 5‘2 + 631-1/2 + .. .= 2nl(A3)n(§1Tl/2 +
) 1/2 = &
-;‘— 321' + . . .) % %ki_ Tk/e

Inspection of s equation shows that the terms of the right-hand side
start with T1/%. Therefore, the coefficients of T1/2 and 70 on
the left-hand side must vanish:

ot
[

]

O
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Further, since

]
Ny
1
o

(egs. (42) and (43)), and since
B =8 -5 =0
it follows that
BL =Ty - $18 - 0,8 - 91 (Gofy + 616.0)= 0
Reburning to equation (46) and using those reéults , one has
k-2

1/2
St 2"1(“-3)m("3 AR < #/2) >

and, hence,
o - k-2 = o z E2\/2 & -
Ck 2 ‘,52 1/2 2 Px “2 @ Xkfo
B ———rensiiL = 2K A - T 1+ —_— - T =
};(k-l): 1)\ ( Bagk' %

The expression within parentheses to the one-half power may be expanded
by means of the binomial theorem. Also the & series can be written
in simple form making use of equation (hl):

i 5 B _ B .1/2 1i5k]5—§‘
T = 2K- (A l+:— -—TT -
5 (k - 1)! 1( 3)n o B \3 X!
- 2 - 3
o k-2 00 k-2
l%_zE]%TT> P Z-k—]f-r + ... X
2 B2\'3 ke 28,7 \3 **
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When the right-band side is reduced to a single power series and the
coefficlents of like powers are equated, the results are these:

~
<-3-0—(15)11
B
03 = l“Cl(AB)nJ%
5 -Lla B3
h > 332
5 g2 > (¥7)
e =L a5 _ 53
2~ % 3352 ..22
-1 5 BsBy B
06—36 c3 18 52 15 622 62 +360cx,3

-~/

A solution for the singular interval has now been found. However, it
is necessary here as in the regular interval to use an altered form
for y obtained in a mammer similar to that of appendix B. This solu~-
tion is found to be

3 - k2
b cos AzT + -—'b sin AT +
(do Ag® ) > )‘3( A5° > >

1 = 2 2 )
o + -2— —_— sz + -1—0—5- K253T7/ + T Kzsl'_'l' +

K255T9/ 2 + . . . (’4’8)

Since this is not & pure power series, the coefficients of the powers
of T cammot be used as dk in the computation of ﬁk and hence of

(eas. (47)). A plot of the equation is therefore made (fig. 19) and a
curve of the form

-

NII—'

&1 + 5 dy*r? (49)
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is fitted to it by verying 5,4_*. The coefficients of this parabola are
used to represent y in equations (47).

A similar formula for x; may be useful for its calculation. It
is found to be

& =~ _T/2
x) = & COS')\lT+-12&$\-]g-Sin?\lT+—EWl*T2+£-5'}\2 7/

é—g-é 7\12 (Ell. - Wl*) —rl* + 1?3];9-6 7\12651-9/ 24 ... (50)

Finslly, equation (28c) may be solved by su'bstltution of the series
for Xp and direct integration:

& = rs Z T /2
) k+2 (51)
w = 2K3 Z W .+ (U))

A complete, useble solution has now been found for the singular inter-
val n. The same considerations which cause termination of a regular
interval will govern this interval.

Procedure.-~ A procedure is given here outlining the analytical
method which has been derived. The steps are given for both the singular
and regular intervals with differences noted.

(1) Determine values of m;, m,, mg, Wy, Ky, kg, A
Any KBgy Hyps Pos P> 75 25 1, 8, V, V, r, and TI.

e e e e e . W ———— - - . A———— o En o _——  —————— T e W e = " = o —
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(2) Calculate the parsmeters

N2 = kp/my

N = ks /ng

My kp/mz
Brrk,/I

K2

*3

(3) Construct graphs of

-7
A A
fl(X) = lpo (l - 1 X)
kp AoZq

Xk -8 -
£a(x) = “;25 27'a :x x

A3(x)
Phase one: The steps for phase one are as follows:

(4) Determine the time +%; at the end of interval O by interation
of equations (k).

(5) Calculste values of (5‘1)1’ (%1)1» (y)l, and (fr)l from
equations (13).

(6) Calculate (w); snmd (7 + ra))l from equation (15).
Phase two: For phase two the procedu.;ce is as follows:
(7) Bstimate the length of the interval to insure accuracy of:
(a) Parsbolic curve for A3(x)
(b) Linear approximations for f£;(x) and fp(x)
(c) Parabolic curve for y(t)

(4) Convergence of series for x and ‘xl



NACA TN 3217

(8) Determine oy, 0, @,
glve the best approximations:

#, 6, and 6y

A5(x) = (A5), (L + 018 + 0pt?)

with
E =
£ (x)

fo(x)

Singular interval
(89) From step (5) calculate

8 = (%1)n
& = 2(¥1)n
do = (¥)n

i, = 2(3),

(510) Using table L4, compute
successively by, &8y, bo, ag,

Bo, €3, bz, BsfBo, and &.

(S11) Calculate and plot
y(7) 1in the interval from equa-
tion (48). Determine dy* +to

give the best approximation from
equation (49). Record dy* in

teble 1. All higher values of
dk are made zero.

- (%)
o + ¢1x
8, + 0, )
Regulaz-‘ interval
(R9) From step (5) caleulate
| 8 = (*1)n
.8y = (X1)n
do = (¥)p
4 = (Fy

(R10) Using tebles 5 and 6,
calculate successively
From table 5:

b B

os 82, o\c]-,

By &
\)'02, 0(2

From table

by, a3,

(R11) Calculate and plot
y(7) in the interval from equa-
tion (37). Determine ds* to

give the best approximation from
equation (38). Record do* in

table 3. A1l higher values of
dy are made zero.

55

in the interval to

6:

@




5l NACA TN 3217

(R12) Calculate successively
From teble 5: From table 6:

bo, &y, B2

>°3’ o
b3, 85, B3
cy

(s12) In teble 4 calculate
successively Bh_/Bz, 65, b5,
55/52: cg, and bg.-

(R13) Form series

00
&
xl=%-1-§-1:51k

(S13) Form series

[+
X =D
o

e
5

X

P

x=§—kc-1:§-1'k/2 x=§

(14) If the end of the interval is determined by value of x, find

by trial the value of T for vhich x = (x)n_,.l. Then calculate
(*)pe1r (U)np1e (Pngrs 80d (F)pg1. IE the value of T ends the
interval, all the values may be computed immediately.

(R15) Compute (‘”)n+l from
equation (36).

In some interval the condition

(s15) Compute (w),,; from
equation (51).

(16) Determine (¥ + xw),,;-

Y+ o=V, at t = by

will be satisfied. This terminates phase two.

Phase three: The procedure for phase three is the same as that for
phase two except for the following changes:

(a) Replace step (R11) as follows:

(R11') Calculate and plot y(1) using equation (37). Deter-
mine * +to give the best approximation from equa-~

tion (38).

(b) In step (1k) (y)m_l and (§),,; need not be calculated.

(c) Omit steps (R15) and (R16).
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Application of method to numerical example.-~ The analytical method
is applied in this section to the example used for the numerical inte-
gration. The procedure of the preceding section is followed, so that
here only results and special remarks need be given. The data for this
example have been listed in the section "Numerical example." From these
the computation parameters are found to be.

7\12 = 120.7 sec™2
7\32 = 2,008 sec™2
Kk, = 68.63 in.=3/2gec"1

ko = 1,607 sec™

Kz = 182.2 in."l gec™?

Figures 17, 18, and 9 show graphs of the functions

£.(x) = 0.9870(1 x)-l'l
1) = 098101 - 5

£,(x) = 0.06248 67 - x
13 + x

and Ar(x) 5 respectively. The parameters for the approximate repre-
senta.t?ons of these functions in each interval are collected in table T.
These are all secant approximations, except for one parabola in the
case of A3(x) .

The computations for interval n = 0 (phase one) are the same as
those given in the section "Numerical example."” Interval 1 at the start
of phase two is a singular interval since (:'c)l is zero. The interval

length is limited by the bresk in the A3(x) curve at x = 2.036 inches.

However, to obtain a good epproximetion for y(4) and sufficient con-

vergence for x(t) , it is better to restrict the intervael to

T = 0.3 second (x = 0.7 inch). When the interval length has been chosen,

the computation proceeds without incident as shown in teble 4. In
figure 19 the graph of y(t) in this interval found by use of equa-

*tion (48) is shown. In this graph the fitted parsbols, equation (49),
is also plotted. The fitted curve has the same initial value and slope
and is chosen to give the least percentage error. This procedure is
handled similarly in each interval.

-
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Interval 2 is the first regular interval and extends until
x = 2.034 inches. The computations for this and the following intervals
are displayed in tables 5 and 6.

The next interval (n = 3) may be carried to x = 3.350 inches
where a second break occurs -in the A3(x) curve. This needs no special
discussion.

Although A3(x) becomes a smooth curve for some distance after

x = 3.350 inches, interval L is terminated at x = 8.156 inches which
meintains convergence of the x series and permits & good approximation
for y(t). In this interval transition occurs. For + = tl = 0.1086

second, (F + m)t = 1,672 inches per second = V. At this time the

differential equation for y(t) changes form and is no longer coupled
to the other dependent verisbles. However, since y and ¥ remain
continuous through transition, it proves possible in this example to
carry ‘the approximation for y(t) past the transition point.

The series solutions for all variasbles in each interval are given
in table 8. These results when plotted give almost identical results
to those found by numerical integration (figs. 12 to 14).

Analytic Start of Numerical Integration

When using the numerical integration method, it is necessary to
meke the first step with an integration formula of poor accuracy. This
does not matter if it is 1 step out of 40 or 50, but it does, if the
integration is to be made with large steps. And it matters still more
in the present case because of the singularity of X at +© = ty. This

infinite value of the derivative makes all finite-difference work non-
convergent at the time +t = t;, and therefore the outcome of the first

step is not reliable.

It is therefore advisable to use the analytical method Just
described at least for getting started in phase two, even if numerical
integration 1s to be employed for the rest of the work.

In this case only one singular interval needs to be handled, and
one may follow the instructions as given in the left-hand column of the
procedure. The interval is chosen as long as possible, and near its
end the variables x;, x5, X, and y and their derivatives are

evaluated for three or four equidistant times. These values are entered
in the first lines of an integration taeble, and from there on the numer-
ical integration is run as shown before.
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This is the procedure if one wants to deal with the most exact set
of equations used in this report, that is, with those which neglect my
but keep . If the mass m; of the spring-back motion is to be neg-

lected, equations (43) must be replaced by a simpler set, representing
the static values of the horizontal deflection:

HpFy

Yy ==

k3

This yields the simple relation

% = 25

which tekes the place of equations (43). With these coefficients con-
vergence of the y series is Just as good as that of the X, series,

and 1t is not necessary to apply the curve~-fitting procedure described
in conpection with equations (48) anmd (49).

GENERALIZATTONS OF THEORY

In this section two of the most stringent restrictions are dropped,
namely, that the axis of the shock strut lies in the plane of the wheel
and that this axis is vertical. In both cases it is found that the
computation, though more realistic, is also more laboriocus. It will
depend on the particular case whether the results justify the greater
effort. This should be checked in all practical cases. When the shock
strut makes an angle with the vertical, the possibility of a divergent
motion (self-excited vibration) appeers, which deserves further
investigation.

Eccentric Wheel

While landing gears for e loads often have two wheels arranged
symmetrically on both sides of the oleo strut, small landing gears have

e o e = e et e e e e = = e v = g e e —p ¢ o i e -
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only one wheel. In nose gears (end tail gears) symmetry is maintained
by the use of a fork, but in the main gears the wheel usually is arranged
eccentrically as shown in figure 20 and a pair of shears is provided to
prevent the wheel from castering. The eccentricity of the drag force D
presents an additional problem which must be worked into the general
equations.

Figure 21 shows a free-body diagram of the lower part of the lending
gear in three projections. The wheel has been taken off, and the
force H at the axle has been introduced. The following equations of
equilibrium may be written:

H'e' = He

a+ x la+x

'1.'+§ o

a-+x

~F
a+x 1

In the first equation, the arm e' depends on x according to a
simple trigonometric relation. This variebility may be taken into
account when it is worth while, or e' may be assumed as an average
velue. In the other equations the contributions of the friction forces
pgN bhave been neglected, as before.

The forces N; and N;' and N, and Np' combine to two

resultants
\/N12 + (m1)?

\/N22 + (N2 ') 2
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and these resultants give rise to friction forces:

7N
1/2
2
'J'S|H| 2 1 x\ e Fl
Tl—a.l.x (?.-a.—x)+7. —a—a);—fe
\.
I A1/ (52)
T2=.}"'_SI_H. 12+ (7,'+2£)_§__Ele
8+ x 2/e! H
./

The sum of these forces takes the place of the term

Mg |H| 2Za-+ax- X

in equation (7) . Here again the forces T do not change direction
if H does, and consequently |H| has been written outside of the braces,
but not inside.

It may be observed here that the second term in the expressions
for Nl' and 1\T2‘ changes sign if the shears are placed: on the rear

side of the landing gear. This may easily be seen from figure 20. When
the alrplane is supposed. to move from left to right the shears are to
the rear, and the directions of H and H' must be inverted. The
friction forces are then

7™

A . o 1/2
4(1-a-x)2+l:(l'-a—§)§-+—ﬂ-]-'%l

kg |H|
a+ x

T =

u_|g] F 0| 1/2
T, = & 412+[(1'+—2-")£+—]—-%]

a+ x e'! H

> (53)

-’

\/

Evidently, it is better to place the shears on the front side since
this will result in lower piston friction.

In the most general case, the force Ty + T, depends on x, Ty,

and H, and its value must be computed in every line of the numerical
integration. This leads to a substantial increase in compubtation lsbor.
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A considerable simplificetion is obtained if the masses m, and m3;

in equations (9d) and (10b) are neglected. Since, by definition,
H= k3y, one has then

and, except for the factor |H| 5 ‘the friction forces depend only on x.
One may then put
Ty + Ty = BIEI

with

B == E‘I.-a-x)2+e2(7"-a-x/2+i)2]l/2+

a+Xx e' By,

1/2
1 2
[12+e2(z +x2+_1_)]

e' Uy

and it is possible to prepare a diagrem similar to figure 11 representing
B as a function of x. Although the formula does not look very pleasant,
the preparation of the disgram is an easy job, since only a few points
are needed to trace the curve. Once this has been done, phase two may

be dealt with in exactly the same way as when the wheel has no
eccentricity.

In phase three the deflection y and hence H may be computed in
advance and, therefore, the ratio F1/H camnot have a fixed value.

Whether one uses the correct values of y or the average of |y| , 8B
explained before, there is no way of avoiding the repeated use of equa-
tions (52) at every step of the numerical integration.

Inclined Shock Strut

So far it has been assumed in this report that the axis of the
shock strut mekes a right angle with the runway. This is usually not
the case, the shock strut being inclined by a moderate angle o from
the vertical.

If this inclination is to be taken into account, all the equations
must be reexamined and most of them rewritten. In order to keep the
relations as simple as possible, this will be done here under the
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assumptions that in phases one and two the masses m, and mz can be
neglected and that in phase three mp at least need not be considered.
As shown before, it is not possible to neglect mz in the spring-back

motion, because then the influence of the wheel drag would be lost
entirely.

The notations are shown in figure 22, where F; is the force in

the shock strut end x, the stroke measured in axial direction. The
deflection y 1is at right angles to the shock-strut axis, but Fo and

and D are vertical and horizontal, respectively.

The -equation of the shock strut, equation (7) , may be retained as
it stands, if H 1is interpreted as the force normal to the shock strut;
that is,

H=Dcos a -Fs sin o

The equetions of motion must be investigated separately for the
three phdses of motion.

Phase one.- In the prestress phase equations (9) were used. Equa-~
tion (9a) is still applicable. To find the replacement for equation (9b),
one must start from the more general equation

Here, equation (9a) mey agein be used to eliminate Fp, but x; and

X» are no longer equal since the deflection y has a vertical com-
ponent y sin a. Therefore,

X =% =y sin o
and when this is introduced in the preceding equation, one .has instead
of equation (9b):
m¥s + koXy - my sin o (F) =W (5ka)

This is no longer an equation for x, alone, and it must be considered

simultaneously with the replacement for equation (9d) . When the dynamic
term m35r° is dropped from that equation, it states simply that the

lateral force H = k3y which deflects the shock strubt is equal to the
drag |.|T'.E‘2. Under the present conditions k;y must be equated to the
external force normal to the shock strut:

k3y=Dcosa.—F2sina.=F2(pTcosa,—sina.)
i

e e e e o mm A W = o ————————————— A ¢ —
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and with equation (9a) it becomes

kzy = (kp cos a - sin a)kX, (54b)
This equation may readily be used to eliminate y <from equation (51}&):

mll}. - %(“r cos a - sin a) sin a]icz + kX, = Wy (54a')

It appears here that by a suitable (or rather an unsuitable) choice of
the data one may obtain a negative mass coefficient, that is, en expo-
nential increase of Xxp with time.

Equation (9c) indicates that F) = Fp if m, = O. In the present
case this must be replaced by the relation

F1=Facosco+Dsincr,

which may be read from figure 22. With D = “::'F2 and equation (9a)

it becomes
F o= k2x2(cos a + B sin @) (540)
Equation (9e), the last of the group, remains as it stands.
Since all equations in phase one are linear, the solution may be

easily obtained. The phase will not be of long duration, and hence a
power-series method will be most convenient. The unknown x, 1is assumed

in the form
I
k=0 —°

and is introduced into equation (5ka'). With the initial conditions

t =0: x2=1'c2=0
this yields

x2=i‘;_t2§17-h_1,(52;3)+31_,<§21§3>2- .
ml . M .
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where

3
The other variables depend on X5t

my =ml|EL _%:_2_ (br cos a - sin o) sin or.:l

ko
y=E;(prcosa-sma)x2

my ¥
X. S0 cmm———
1% m 2

Phase two.- In phase two equations (9a) and (10a) are still valid,
which may be combined to

mic'l = Wl - k2X2 (559-)

Equations (54b) and (5kc) are applicable also, but x enters now into
the relation between xq, X5, and y:

X ~%X, =Xcosa-=ysinag (55b)
When y from equation (54b) is introduced here, one obtains

k3'
—k3-kesina.(urcosa,-sina.)

X5 (%, - x cos a) (55¢)

In sddition, there is still the shock-strut equation (eq. (7)) which
is best written in the form of equation (17). But, in the present case

2l - a - X

P - = + in -
1 - By k2(coscz. My 8in @)Xy ~ Ug p—

ks(py cos @ - sin a)x,
=k2x2[cos o+ By 8in @ - pg M(P'r cos o - sinor.il

a 4+ x

One may write this as

F) - By = B'%y
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with the coefficient
2l - a - X
B! = kg[cos @+ pp sin @ - pg(pr cos o ~ sin a) __a._-l-—;_-] (56)

depending on x. Eguation (17) assumes then the simple form

% = %\Ez F2 - T (57)

Equations (558), (55¢), and (57) are three differential equations
for xy, X, and x. They may be solved by the methods described in

the section "Differential Equations of Landing Tmpact."

When x» is eliminated from equations (55&) and (55(:) , an equation
will result which contains terms with 5:'1 and x5 . In general, both
will have the same sign, but it may happen that their signs are opposite,

depending on the denominator in equation (55¢). This hints at the
possibility of a divergent motion.

The end of phase two is reached when the wheel is completely spun
up, that is, when

I‘(D=Vh

Here the term y used previously has been dropped, since it is insignif-
icant when only the static deflection y 1is considered 2m3 = 0). The
angular velocity o of the wheel is found from equation 9e) which
still spplies.

Phase three.- The only difference between phases two and three is
that the drag D is no longer proportional to the wheel force Fyp.

One msy, therefore, keep all those equations which do not contain the
coefficient of runway friction p,.. They are equations (9a) ) (55a) »

and (55b).

In addition, there are now equations (1a) and (1b) and the kinematic
condition of rolling without skidding, but they all need a careful
revision. In equation (la.), the term pF describes the force on the
vwheel in the direction of the displacement y. This is now the force H,
and the equation reads

msy = H - gy
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In equation (lb) the term pF is the drag force D vwhich has the
moment Dr and accelerates the rotatory motion of the wheel:

Id = Dr

The horizontal velocity of the airplane is V. Relative to the airplane

the axle of the wheel has a backward velocity X sin o + J cos a, and
the lowest point of the wheel rim has still the additional velocity 1w,
also directed backwards. The resultant velocity of this point must be
zero:

Vh~xXxsina -y cosa-rm=0
Finally, there is the relation between the forces acting on the wheel:
H=Dcos a - Fy sin a
which has already been used 1n phase one.

From these equations one may easily eliminate H, D, and o, and
‘then equation (9a) may be used to eliminate also Fp. The result is the

following differential equation:

(m3+-f§cosea)'y'+ k3y+-§é-cosa.sina.'i+kasinu.x2=0 (58a)

This and equations (55a) and (55b) are three equations for the four
unknowns X;, Xp, X, and Y¥. The fourth equation is the equation of

the oleo strut, equation (7). It must now be used in the following way:
F; 1s the force in the shock strut; that is,

Fy =Fycosa+Dsina

=k2x2cosm--la-(§sina.+3r'cosa.) sin o
r

The first and second terms on the right-hend side of equation (7) remain
as they stand. In the third term, H is the force k3y that deflects

the shock strut laterally. If these expressions are introduced, equa-
tion (7) reads as follows:

_ - Ci e mme e e e m e ——— J— — - ————— S m——— m o= e = e am e =
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I .o I .o
— in + - cos + — sina X +
=2 cos a sin a y + By k2 @ Xy =z

5
P e ir, -0 (580)
2
2h3
Equations (58) may be considered as a pair of linear equations for the

second derivatives ¥ and X. When they are solved for these unknowns,
the following relations are obtained:

X2 -
sincr.x2

EAQE 2+ Fylcot a =0  (59)

m:y + (kz - B cot )y +
5 + (k3 ) 22,

TN

mzsinga. i+pA2ZJ'<2+Fa- k3r:osa.sina._ay_
il + cos?a 2A3 Bf— + cosZq
sin2a
k, cos a [1+ 5 X, =0 - (59p)
= + cosd

I

These and equation (55a) mey be used to find by numerical integration
¥y, %, end Xx;, and x, will then be found from equation (55b).

BINDING OF SHOCK STRUT

So far it has been assumed that the friction between piston and
barrel depends only on the forces N; and Ny 1in figure 6, which in

turn depend directly on the force H transmitted from the wheel to the
lower end of the shock strut.

The shock-strut barrel is a rather thin-walled tube, and in the
usual cantilever construction it is subjected to a large bending moment.
It is known that in such cases a slight ovalization of the cross section
is part of the elastic deformation. Since the piston will locally



NACA TN 3217 67

prevent this ovalization, it must be feared that the resulting pressure
between the wall of the barrel and the piston may lead to a considerable
increase in friction.

It will be seen on the following pages that this problem leads
into the nonlinear theory of elasticity and a good deal into the bending
theory of cylindrical shells. It is not possible to make such calcu-
lations part of & routine stress analysis, and it is even beyond the
scope of this report to present them in detail. But it is possible to
indicate the lines of thought and the final conclusions, which seem to be
fairly general.

Consider a long thin-walled tube of clrcular cross section subjected
to pure bending by couples M applied at both ends. Figure 23 shows an
element of this tube. According to elementary formulas there are bending
stresses

- M cos 0O

a2t

and they produce a curvature of the tube

af _ M

dx Ena3t

(o}

Because of this curvature, the stresses on opposite ends of the element
do not have the same direction, and the stresses acting on corresponding
elements of both cross sections have an upward or downward resultant.
For an element a d0 t of the cross sections this resultant is

a d0 to d¢

and it mey be considered as being distributed over a strip of the middle
surface of the cylinder, having the length dx and width a d0. The
resultant force per unit area of this strip is

q-= tc.gﬁ = M2 cos 0
ax  ExPadt

In the lower half of. the cylinder (cos 6 > 0) it is directed upward and
in the upper half, downward, as indicated in the cross section in
figure 23.

It is this load which causes the ovalization of the tube. One may
find the magnitude of this deformation by cutting a ring of unit width
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from the tube and applying to it the well-known theory of stresses in
circular rings. If the deformation due to direct stress is neglected,
it will be found that the maximum radial displacement is

WA = .MEQ'_-_VEL
° :t2E2a'h""

vhere v 1is, as usual, Poisson's ratio. This displacement is directed
inward at the ends of the vertical diameter and outward at the ends of
the horizontal diameter. In between it varies as cos 20. Since the

load q is proportional to Ma, the ovalization is a nonlinear effect.

The ovalization of the shock-strut barrel will be less than
indicated by the formula, because of the additional rigidity which comes
from the closing of the upper end and from local reinforcements of its
wall, for exsmple, those necessary for attaching the drag strut. This
reserve in rigidity will be neglected here, since it is rather difficult
and not worth while to evaluate it.

To get an idea of what this ovalization really smounts to, it is
useful to express it in terms of the maximm bending stress opgy = M/:ta.zb.

One finds

Vo _ (S al
f-(%“)z‘l'”a’;z

In shock struts one may expect Umax/E = 0.5 X lO"3 or less and
perhaps t/a = 0.1, This yields

Wo/a = 0.228 x 107

and for & = 4 inches the displacement is 0.9 X 10~% inch. This is
rather small, but one may easily get more by assuming a higher ratio a./t.

Unless the ovalization is smaller than the clearance-between piston
and barrel, the piston will locally prevent it. It will exert such
radial forces on the wall that at this particular cross section the tube
remains almost or completely circular. Since the deviation of the
ovalized tube from a circle is wy cos 20, radial forces proportional
to cos 20 are needed to remove this deformstion. Such forces would
be negative in two quarters of the circumference, but the piston cannot
exert a negative (i.e., inward) pressure on the wall. However, it is
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possible to superpose a constant pressure such that the total force per
unit of circumference 1is

P = Py(1 + cos 20)

(see disgram on left in fig. 24). TIf one neglects the deformation

due to direct stress and considers only the bending deformation of the
cylinder, this load would really lead to a displacement of the reguired
type. But since the constent term P = P, will produce a uniform

outward displacement of all points of the cross section, the piston
would lose contact on part of the circumference. The real load distri-
bution will therefore look like thaet shown on the right in figure 24.
The deviation from the distribution on the left in figure 24 will be
less pronounced the thinner the cylinder is, that is, the more the
deformation due to bending of the wall prevails. In any case, when the
real load distribution is expanded in a Fourier series, it may be
expected that the term with cos 20 will be predominant.

An exact solution of the problem would require the determination
of a radial load

P=Po+ Pycos 20 + P) cos 40 + . . .

‘to be applied in & certain cross section of the cylinder and satisfying
the following condition:

In every point of this cross section there must be either P > 0
and the radial displacement just compensating the one due to ovalization
or P =0 and the radial displacement more than compensating, so that
there will be a clearance between cylinder and piston.

Problems of this kind are very hard to solve, in particular if the
bending theory of a cylindrical shell is involved. In the present case
one may teke advantage of the predominance of the second harmonic , and
on this basis the following procedure has been worked out:

A line load P = Pp cos 20 as shown in figure 25 was applied to a
cylindrical shell of infinite length. The bending theory of cylindrical
shells was used to find the stresses and in particular the redial dis-
placement of the points of the loaded circle. This is a lengthy com-
putation which is not presented here. It was made for several ratios

e s e e e e 4 et e e m e e Sre A e Se et Sy — s AR o e e NP M =t e ¢ m T e A o bt e = e <t e e w v e e = o
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of the wall thickness t of the cylinder to its mean radius a. The
following resulis were obtained:

t/a, Ewo[Po
percent

6.00 480

9.33 163.0

10.96 113.0

13.42 67.8

15.50 5.4

Now a ring of width b is cut from the. shell, and the same load
P = Pp cos 20 1is applied to it in its central plane. Using elementary

ring theory, one may determine the deflections of this ring, which will
also be distributed as W = wo cos 20. The amplitude wp, will be

inversely proportional to the width Db, and one may choose b so that
the deflection wo equals the one obtained for the cylindrical shell.

The width b +thus determined is the effective width of the shell with
respect to the problem under consideration.

The computation yielded the following values:

t/a
percez’rb b/ 8

6.00 12.8%
9.33 10.10

10.96 8.97
13.42 8.14
15.50 T7.91

They ere surprisingly large. This indicates that through a direct stress
system a rather considereble length of the cylinder cooperates in carrying
the load. Real shock-strut cylinders may be expected to be less rigid,
because of their finite length.

The values of bfa may be plotted with t/a as abscissa (fig. 26)

and this curve may be used for all deflection problems in which the
second harmonic is preponderant.

- _ - - ——— — - ——————— - - e e e ——r———— e ————
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The following application may be mede of this result. Assume a
pressure distribution between piston and barrel as shown in figure 27
and described by the equation

P = P2* cos 20

applicable for -45° < 8 < 45° and for 135° < 8 < 225°. From elementary
ring theory the following bending moments in a circular ring will be
found:

In the loaded parts of the circumference:

M= % Pg*a2[-\/§(1 - cos 6) + 2 sin29:| - My

{

In the free parts:
M=%‘-P2*a.2E.-V§(l-sin9)] - My

with

_ 2
M, = 0.1803P,*a

Neglecting the influence of the direct stress, one may compute from
this moment distribution the following outward deflection of the
points 6 = 0° and 6 = 180°:

Po*alt
w = 0.230
EI

bt

where I = is the moment of inertia of the cross section of the

ring.

This deflection must be equal to the inward deflection wy; due to
ovalization, which was found to be

2
g 3
_ - max) &
vy = (1 v2)( E ) 2
This will yield the maximum Po* of the piston-ring pressure. If the

deformation due to direct stress were taken into account, a smaller
value for Po* would result.

- e e e s ——— e e = - - ——— - - U
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Now take some typical figures from a shock-strut barrel:
a=D.h in,
t = 0.4 in.
E = 3 x 107 1b/sq in. (steel)
v =0.3
and assume oy, /E = 5 x 10* and b = 5a = 20 inches. Then

I = 0.1067 in ¥

Po* = 4.9k 1bfin.
The total friction force due to this load is
- 1559
T = by, ‘—/; Py* cos 20 a d6 = 2u Py%a
Assuming, as before, that pg = 0.1, one has
T = 3.94 1b
which is entirely insignificant.

Going to extremes in opg,/E and in +t/a, one may get 10 or
20 times this value, but this still would be without significance.

One

may, therefore, expect that binding of the piston in the cylinder will

not be a serious problem except in very unusual desligns, and it does

not seem necessary to include it in the ansalysis.

Stanford University,
Stanford, Calif., April 8, 1953.
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APPENDIX A

PROOF THAT SPRING-BACK MOTION CANNOT BE

INTERRUPTED BY SLIFPING OF TIRE

When the vertical force is increased linearly with time, the spin-
up deflection is given by equations (6). At a certain time +t = bt
the spin-up is completed and the ensuing spring-back defilection is
given by equation (5a). Introducing here y(t4) from equations (6)
one finds

y =k [(tt - % sin ?\tt) cos N (b - by) + 7\i,-(l - cos M) sin A'(t - ttﬂ

The corresponding drag is, according to equation (5¢),

D=—2L Xy
I+ mr?

and the admissible drag force is pFt. It is asked whether the
quotient D/uft will always be smaller than 1.

Now,

I+ mr

p.']F'J‘b= L 2[(:5—-%sin7\tt> cosk'(t—tt)+
-)\%b-(l- cos Nty) sin ' (t-ttil

If the bracketed expression is differentiated with respect to time and
the result equated to zero, the following relation is obtained:

(tt - .% sin )\tt) cos A' (6 - bg) + -7%.-(1 - cos Nty) sin A'(t - ty) =

(1 - cos Aby) cos N'(t - ty) - ?\‘t(’ct - % sin ?\tt) sin A' (b - ty)

e _—— e s = — mmfm ek« —— - -——
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This equation is valid at those times + at which extreme values of
D/th will occur. For these values of t it may be used to give the
right-hand side of the preceding equation another form:

(-I-'%t-)excr = I_:I;—ra—[(l - cos Nbg) cos A'(t - t) -

7‘T'(7cc,G - sin Atg) sin A'(t - tt)]

Since yt and ¥y are both positive, the first maximum of y and
hence of D occurs vhile A'(t - &) < n/2; and, since the denominator

is increesing with t, the maximm of the above quotient must still
occur earlier. Then sin A'(t - t) = 2 0 and, since certainly

At - sin Aty > O, the bracketed expression cannot be greater than its
first term.

Now,
0S1-cos Aty S

0<cos A'(t - t;) <1

Hence the bracketed expression is smaller than 2, and, since me > I B
the first meximm of the right-hand side is smaller than 1. All
following maximms and minimums of D have the same absolute value,
but the admissible drag pr increases continually a.nd the quotient
can never again reach the first maximum.

It follows that once the spring-back motion has begun, slipping
between tire and ground will never occur again and equation (52)
describes the motion for ty S t< w.
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APPENDIX B

MODIFIED POWER-SERTES SOLUTION FOR LATERAL

DEFLECTION y OF SHOCK STRUT

A series solution has been found in the text for the harmonic
equation

¥+ M = rpxg

where the forcing function or right-hand member is expressed as a power
series

n2x2=u2(bo+bl1--|‘--]é-b2'r2+ . . )

The displacement y represents an osclllation of the mass mz on
the spring k3 and will therefore contain the terms cos )\31' and
sin ?\37 representing the free vibrations of this spring-mass system.

It is therefore not surprising that it camnot be well represented by the
first few terms of the power series in T when T approaches the half-
period n:/)\3 of this vibration, and it is desirable to find a better

representation of the function y(7). This is found by splitting off
the free vibration, writing

0 d 1
¥ =Dy co8 AsT + Dp sin AsT + >_ .1;17‘_ */2 (B1)
o .

When this is introduced into equation (28c), the same expression
d' = -Ns" Q'+ Kb p for  k>1 (B2)

results, and d,' and d;' are again left undetermined. But now there
are four coefficients, Dy, Do, d,', and d;', which must be chosen

so as to satisfy the two initial conditions, and the question arises
how to make best use of the arbitrariness thus provided.

Since the differential equation is linear, its solution may be
considered as composed of several parts. Each term of the forcing

PR C etema e n o s v e Ay a—— e T e R ar e e - e - —
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function produces a forced nonoscillatory motion plus an induced oscll-~
lation such that the two together satisfy the initial conditions
y=y=0 at t= tn Additional to the sum of all these terms there
is the oscillation which satisfies the actual initial conditions. Some
of the particular solutions for zero initial conditions are listed below.

Forcing term Solution y(t)
Kb K bo_ 1 - cos A
270 2 N 2 ( = 3‘a
]
'bl '
n2'bl-r Ko -}\—3 (7\31' - sin ?\37)
]
b b
L ¢ b2 —K—a—l—cos')\-r)+}-n —2—-r2
2 22 2 3 37 T2 2,2
A3 M
b b
1 3 - - .25 .3
¢ |c2'b31- Ko 7\35 (')\31' sin 7\31) + Z Ko )\32 T

In the power-series solution using the coefficients, equations (33) »
the oscillations due both to nonzero initial conditions and to the
forcing terms are expressed in series form, and it is this series which
converges slowly.

The solution equation (Bl) contains a sine and cosine, and the
coefficients D; and Do may be chosen to put in closed form the
oscillation due to nonzero initial conditions plus any desired number
of the oscillations due to the forcing terms. Inspection of the solu-
tions listed above shows that the amplitude of the sine or cosine due
to a forcing term

is
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The k + 2 power of A3 in the denominator makes the induced oscil-

lations-due to the higher terms diminish in importance. Thus it is
most advantageous to absorb in the sine and cosine of solution (Bl) the
two oscillations due to first two forcing terms nabo and lce'bl. This

is accomplished by choosing

b
Dy = (y)n - ko =
A2
]
1 by
Do == (y), - ko —
2 )\5 n 2'7\33

When now the initial conditions are spplied to equation (B1) , it follows
that

(¥)p =D1 + &,

(3)p = MDp + &3

Hence:
b
t = . Po_
d.o = |c2 5
A3
b
=k X
dl' = n2 =
A3
Then from equetion (B2):
4 =0
d3' =0
dy ' = Kby

- = A e M e e e e e aa
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TAELE 1
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APPROXIVATE INTEGRATION USING STATIC y AND LARUE STEPS
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COMPUTATTONAL FORM FOR &, B, oy, AND [, If SINGULAR INTERVAL

@ @ ® | ® | ® @ ® @ | © @ ®
- [
a 3 B Inee 0)4x 4+ 5) Gptlys L 9oty w B ¥ (8)-
x k & + 5 »
* x x @&-G -120.7F)%(®) { 0.0506 x(3) | 0.3200%; ~0.0256h] ®®! @ Pufbe
[+] 0.9954 o 0.0182 | 0.995k iz -1, k39
: zgg ° o 15?09 253.0 % -1.751°x 106 o k215 0 0 234.8
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fo = Sofy
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TABLE T

NACA TN 3217

PARAMETERS FOR APPROXIMATE REPRESENTATION OF

FUNCTIONS f,(x), £,(x), AW A3(x)

2260 = 4, + B 2,00 = 0,4 03,

Az(x) = (A3)n(1 t o+ 2 02§2)

E=x - (x)n]
Intervel | ¢, 1 [ B3y | 91 Op % 01
1,2 0.987 | 0.0506 | 0.3 0 0 0.3220 | -0.0256
3 .968 | .060 .3 1.936 | -.892 | .3112 | -.0203
b .887 .08k 832 | -.0212 | 0O 2921 | ~-.0L46
5 348 | .152 .750 | -.0370 | © 2517 | -.0095
6 -1.254 .285 639 | -.0469 | O




NACA TN 3217

X3 = 0.993k cos 10.997 + 10.87 sin 10.997 + 2,05277/2 - 711-6.11-7”‘ + . .

X =

v

e
n

TABLE 8

SOLUTION FOR EXAMPLE ILLUSTRATING ANALYTIC METHOD

Interval O:

Phase one

0 <t < 0.00829 sec

x; = 120t(1 - 20.12¢2 + . . .)

x=0

¥y = 32,150t5(1 - 106.4t2 + . .

a>=1o,930t2(1-E1t2+ .. )

Phage two

~

.)

Interval 1: 0.00829 < t < 0.03829 sec; 0 < x < 0.679 in.

18.7:3/2 . q.0142 - 165.8:9/2 _ 28,003 4 . . .

-0.7768 cos 44.81T - 1.988 sin i4.81lT + 0.7950 + 95.65T ~
27,52011/2 + 1,9087% + . . .

182.2(0.993% + 59.7572 - 59.1;875/2 .. ) + 0.751

Interval 2: 0.03829 <t < 0.0761; 0.679 < x < 2.036

x) = 4.469 + 110.67 - 228.712 - 1,59273 + 3,989 - 24920 + . . .

X = 0.679 + 3L.467 + 167.812 - 2,00573 + 18,8407 + .

¥y = 0.7040 sin 4.8l - 1.605 cos 44.81T + 3.032 + 63.31T -

o = 182.2(5.7907 + 39.5712 - 132.270 + 103.27% + . .

53,1007 + 33,1807 + . .

)+ 14.29

T et ———— e -



86 NACA TN 3217

TABLE 8.~ Continued

SOLUTION FOR EXAMPLE TLLUSTRATING ANALYTIC METHOD
Trnterval 3: 0.0761 < t < 0.0940; 2.036 < x < 3.350

x) = 8.245 + 87.327 - 3Th.TT2 - 98T.T™ + 18,530'rlL + 176,800 + . . .
x = 2.0%6 + 38.227 + 1,46872 + 28,3207> - 1;9,1.2071P + ...

¥ = 1.795 sin 44.817 + 1.246 cos 4h4.8Lt + 4.96T + 39.287 - 246,7007% -
2.345 x 10070 + . . .

® = 182.2(6.2097 + 245572 - 61410 + . . ) + k9.k
Interval 4: 0.09%0 < t < 0.1464; 3.350 < x < 8.126

X, = 9.68% + T3.UTT - 382,212 + 597,575 - 3kt & 29640 + . . .

X = 3.350 + 105.27 - k15.572 + 5,5087 - 33,7001" + . . .

y = 2.735 cos hh.8lT + 1.605 sin .87 + 5.067 + 23.76T + h,h537* &+ . . .

o = 182.2(6.3347 - 14.857° + 11.080 + . . .) + T0.4

Phase three

Interval 4 (continued): By, = 0.1073

Same as before except:

y = 7.915 cos 37.32t1' - 0.884k sin 37.327° (' =t - tg)
o= 1672 - ¥

20
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NACA TN 3217

TABLE 8.- Concluded

SOLUTION FOR EXAMPLE ILLUSTRATING ANATYTIC METHOD
Interval 5: O0.1464k <t< . . .; 8.156 < x< . . .

X1 = 12.57 + 39.267 - 266.212 + 9,497 - T,3541" + 12,1601 +
x = 8.156 + 86.4TT ~ 99772 + 2,96573 % 34,7307+ + . . .

¥y = 7.966 sin 37.32T

87
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D

Figure l.- Wheel with horizontal constraint.
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Figure 2.~ Horizontal movement of wheel during spin-up.
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Figure 4.~ Horizontal deflection y for different spin-up times
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Figure 5.- Horlzontal deflection y for different spin-up times ty.
Linearly increasing load.
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Figure 6.- Forces in oleo shock strut.
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Figure T.- ]i.'orces between piston and barrel.
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Figure 8.~ Mess-spring model of landing gear.




i.0

Q

0 2 9 6 8 0 2 14 16 18 20
X, in.

;
m
o

.~ Graph of orifice sree Ay versus stroke x.

H6

LT3¢ NIL VOVE



- e ——

e . ——— e

X1

LTec NE VovN

24

ib

20

1~

-

16
//

12

0 2 4 6 8

Figure 10.- Oraph of air force F, versus stroke Xx.

X, in.

0

12

14

66



DAY
3,60 <
‘\
\L\
2,800 \\
B, 1b/in, ‘_\\\\
2,000 — P~
|
1,20#
400
0 2 4 6 8 10 12

X, in.

Figure 1l.- Graph of factor B wused in equation (17) versus stroke x.
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Figure 12.- Displacement x7 and stroke x for different values of Hp o
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Figure 15.-~ Vertical velocity Xx; and rate of stroke x for different
values of M.
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Figure 1%.- Time history of impact force Fy. Transition point indlcates
time when wheel is spun up.
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y, in. a2~/

-4 i

-1, sec

Figure 15.- Lateral deflection y of the shock strut. Solid line, exact
values; broken line, static values.
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Figure 16.- Time history of impact force F;. Broken line, exact values

from figure 1k%; solid line, approximation based on static y; circles,
same spproximation but from a large-step integration.
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Figure 17.- Straight-line approximation of #£;(x), equation (2h)
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Figure 18.- Straight-line approximation of fa(x) , equation (25).
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Figure 19.~ Approximetions for y.
dashes, equation (49); long dashes, eguation (}41)
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D D

Figure 20.- Shock strut-with eccentric wheel.
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777

Figure 23.- Element of tube, showing forces which produce ovalization.
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